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Abstract

If the gauge fields of the Standard Model propagate in TeV-size extra dimensions,
they rapidly become strongly coupled and can form scalar bound states of quarks
and leptons. If the quarks and leptons of the third generation propagate in 6 or
8 dimensions, we argue that the most tightly bound scalar is a composite of top
quarks, having the quantum numbers of the Higgs doublet and a large coupling to
the top quark. In the case where the gauge bosons propagate in a bulk of a certain
volume, this composite Higgs doublet can successfully trigger electroweak symmetry
breaking. The mass of the top quark is correctly predicted to within 20%, without
the need to add a fundamental Yukawa interaction, and the Higgs boson mass is
predicted to lie in the range 165 - 230 GeV. In addition to the Higgs boson, there
may be a few other scalar composites sufficiently light to be observed at upcoming
collider experiments.
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1 Introduction and Conclusions

The Standard Model (SM) has three main ingredients: 1) the SU(3)C ×SU(2)W ×U(1)Y

gauge group; 2) three generations of quarks and leptons; 3) a Higgs doublet. As opposed to

the gauge group and fermion representations which may be viewed as natural low-energy

remnants of an unified theory, the Higgs doublet is an ad hoc addition required solely to

break the electroweak symmetry and to accommodate the observed fermion masses. In

this paper we show that the existence of a Higgs doublet is a consequence of ingredients 1)

and 2) provided the gauge bosons and fermions propagate in appropriate extra dimensions

compactified at a scale in the TeV range.

Given that gauge theories are non-renormalizable in more than four dimensions, there

is need for a physical cutoff, Ms, above but not far from the compactification scale. An

obvious candidate for this cutoff is the scale of quantum gravity, as would occur if the

gravitational coupling becomes strong at a scale in the TeV range. This may be achieved if

the space accessible to Standard Model fields is embedded in a large volume accessible only

to the gravitons [1], or if there are warped extra dimensions [2]. An alternative possibility

is that the theory becomes embedded in some other consistent ultraviolet completion of

higher-dimensional gauge theory without gravity, while the scale of quantum gravity is

higher.

Below the cutoff scale Ms, we are dealing with an effective field theory which includes

the SU(3)C×SU(2)W ×U(1)Y gauge group and three generations of fermions in compact

dimensions. The basic idea is that the higher-dimensional gauge interactions become

strong at the scale Ms and produce fermion–anti-fermion bound states. It is very sig-

nificant that, with plausible dynamical assumptions, the charges of the quarks and the

leptons under the Standard Model gauge group are such that the most deeply bound

state which transforms non-trivially under the gauge group is a Higgs doublet. Thus, a

composite Higgs doublet which acquires an electroweak asymmetric vacuum expectation

value could result as a direct consequence of the extra dimensions.

Previously, it has been shown that the combined effect of the Kaluza-Klein (KK) modes

of the gluons is strong enough [3] to give rise to a composite Higgs doublet made of the four-

dimensional left-handed top-bottom doublet and a five-dimensional top-quark field [4].

More generally, the strong dynamics intrinsically associated with gauge interactions in

extra dimensions is a good candidate for viable theories without a fundamental Higgs

doublet [5].
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Here we consider the more natural setup where a full generation (the “third” one

by definition) propagates in extra dimensions of TeV−1 size, and the higher-dimensional

SU(3)C × SU(2)W × U(1)Y interactions induce electroweak symmetry breaking. In sec-

tion 2 we study the possible bound states and symmetry breaking pattern of the higher-

dimensional gauge dynamics using the most attractive channel (MAC) analysis. A more

detailed description of the bound states using the Nambu–Jona-Lasinio (NJL) approxi-

mation is presented in section 3. Remarkably enough, it turns out that the composite

Higgs doublet has a Yukawa coupling of order one only to the top quark. The model

includes potentially light composite scalars other than the Higgs boson, which could be

within the reach of future collider experiments.

Despite the uncertainties due to the cutoff scale, we are able to obtain rather reliable

predictions for the top and Higgs masses because the renormalization group (RG) equa-

tions exhibit infrared fixed points. The top mass is predicted with a O(20%) uncertainty,

and is consistent with the experimental value. The Higgs boson mass is predicted in the

165 − 230 GeV range (section 4).

More generally, extra dimensions accessible to Standard Model fields provide a natural

setting for theories with composite Higgs fields. Normally, in four dimensions, these

theories suffer from the difficulty that the SM Yukawa couplings look quite perturbative;

even for the top quark λt ∼ 1 rather than ∼ 4π. On the other hand, in any theory with

a composite Higgs, the Yukawa couplings are expected to blow up at the compositeness

scale. This either predicts too large a top quark mass if this scale is low, or requires

us to push the compositeness scale up so high that the usual hierarchy problem fine-

tune is needed to keep the Higgs light [6, 7]. Theories with extra dimensions allow for

a way out of this problem: all the fundamental higher-dimensional couplings, including

the gauge and Yukawa couplings, can be strong, while the effective four-dimensional

couplings can be perturbative due to a moderate dilution factor from the volume of the

extra dimensions. More precisely, strong dynamics can trigger a composite Higgs to form

in higher dimensions with the associated large couplings, but the power-law running

of couplings in higher dimensions allow these couplings to reach perturbative infrared

fixed points without the need to push the compositeness scale to grand unification scale

values. The discussion of section 4 for the top and Higgs masses holds in any such higher-

dimensional theory, with the “composite” boundary conditions that the top Yukawa and

Higgs quartic couplings blow up at the ultraviolet cutoff.

In section 5 we mention various scenarios with three generations in which some flavor
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non-universal effects prevent the up and charm quarks from forming deeply bound states

at the scale Ms, while also allowing the light quarks and leptons to obtain their masses.

Finally, we conclude with a comparison between our scenario and the supersymmetric

extensions of the Standard Model in section 6.

2 A Third Generation Model

Let us consider the Standard Model gauge group and one generation (the “third” one)

of fermions in D dimensions, where four of them are the usual Minkowski spacetime and

D − 4 spatial dimensions are compactified at a scale 1/R of a few TeV. For even D,

there is an analogue of the four-dimensional γ5 matrix, ΓD+1, hence chiral fermions with

eigenvalues ±1 of ΓD+1 exist. Nonetheless, the higher-dimensional fermions have four or

more components. In order to obtain a four-dimensional chiral theory, the extra dimen-

sions must be compactified on an orbifold or with some boundary conditions such that

the zero modes of one four-dimensional chirality are projected out. We will concentrate

mostly on the case of chiral fermions in even number of extra dimensions, leaving the

more complicated discussion of vector-like fermions in D ≥ 5 for the Appendix.

We assign SU(2)W doublets with positive chirality, Q+, L+, and SU(2)W singlets with

negative chirality, U−, D−, E−. Each fermion contains both left- and right-handed two-

component spinors when reduced to four dimensions. We impose an orbifold projection

such that the right-handed components of Q+, L+, and left-handed components of U−,

D−, E−, are odd under the orbifold Z2 symmetry and therefore the corresponding zero

modes are projected out. As a result, the zero-mode fermions are two-component four-

dimensional quarks and leptons: Q(0)
+ ≡ (t, b)L, U (0)

− ≡ tR, D(0)
− ≡ bR, L(0)

+ ≡ (ντ , τ)L,

E (0)
− ≡ τR.

Given that the massless fermion spectrum (before electroweak symmetry breaking)

is a full generation of Standard Model fermions, the theory is obviously free from four-

dimensional anomalies. Nevertheless, there may be D-dimensional anomalies because the

theory is chiral. There are no SU(3)C anomalies because the fermions have vector-like

strong interactions. Similarly, the unbroken U(1)EM is anomaly free, and the gravita-

tional anomaly cancels if we include a singlet with negative chirality. (Its zero-mode can

be identified as a right-handed neutrino.) On the other hand, the SU(2)W and U(1)Y

representations are chiral and there are [SU(2)W ]D/2+1, [U(1)Y ]D/2+1 and mixed anoma-

lies. These D-dimensional anomalies, however, can be canceled by the Green-Schwarz
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mechanism [8]. We will assume the presence of such a Green-Schwarz counterterm in the

effective Lagrangian so that the full theory is non-anomalous. This term will not play

any role in the following discussion.

At the cutoff scale, Ms, the Standard Model gauge interactions are non-perturbative

and produce bound states. Some of the scalar bound states may have squared-masses

significantly smaller than M2
s , due to the quadratic dependence on the cutoff of their self-

energies [9]. We do not expect that the interactions which are strong in the ultraviolet

exhibit confinement, because at large distance (R < r < Λ−1
QCD) only the zero modes of the

gauge fields are relevant and the interactions are not strong. The effective theory below

Ms involves both fermions and composite scalars. The squared-mass of the composite

scalar decreases when the strength of the attractive interaction that produces the bound

state increases. For a sufficiently strong attractive interaction, the squared-mass turns

negative inducing chiral symmetry breaking.

In order to study the low-energy theory and the symmetry breaking pattern, we need

to identify the most attractive scalar channels [10]. In the one-gauge-boson-exchange

approximation, the binding strength of a ψχ channel is proportional to

ĝ2
3Tψ · Tχ + ĝ2

2T
′
ψ · T′

χ + ĝ′2YψYχ (2.1)

where ĝ3, ĝ2 and ĝ′ are the six-dimensional SU(3)C × SU(2)W × U(1)Y gauge couplings

at the cutoff scale, T and T′ are the SU(3)C × SU(2)W generators of the corresponding

fermion, and Y is the hypercharge. For computing the relative strength of various channels

it is convenient to use the following identity:

Tψ · Tχ =
1

2

[

C2

(

ψ
)

+ C2 (χ) − C2

(

ψχ
)]

, (2.2)

where C2(r) is the second Casimir invariant for the representation r of the gauge group.

The bound states which can be formed depend on the transformation of the higher-

dimensional fermions under charge conjugation. Therefore, we will consider separately

the cases of D = 4k + 2 and D = 4k + 4 with k ≥ 1 integer.

2.1 Fermions in six dimensions (D = 4k + 2)

We first study a six-dimensional [or more generally, (4k + 2)-dimensional] theory with

chiral fermions. Note that these are dimensions larger than M−1
s accessible to the quarks

and leptons, and the discussion that follows does not depend on the existence of other
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Composite
scalar constituents

SU(3)× SU(2)×U(1)
representation binding strength

relative binding
for ĝ1 = ĝ2 = ĝ3

HU Q+U− (1,2, + 1/2) 4
3 ĝ2

3 + 1
15 ĝ2

1 1

HD Q+D− (1,2, − 1/2) 4
3 ĝ2

3 − 1
30 ĝ2

1 0.93

q̃ Q+Dc
− (3,2, + 1/6) 2

3 ĝ2
3 + 1

30 ĝ2
1 0.5

X Q+Uc− (3,2, − 5/6) 2
3 ĝ2

3 − 1
15 ĝ2

1 0.43

HE L+E− (1,2, − 1/2) 3
10 ĝ2

1 0.21

q̃′ Lc+U− (3,2, + 1/6) 1
5 ĝ2

1 0.14

q̃′′ L+D− (3,2, + 1/6) 1
10 ĝ2

1 0.07

X ′ Qc
+E− (3,2, − 5/6) 1

10 ĝ2
1 0.07

Table 1: Attractive scalar channels in six dimensions with chiral fermions

dimensions which are either smaller than M−1
s or inaccessible to the Standard Model

fields.

In (4k+2) dimensions, the charge conjugation does not change the chirality, in contrast

with the 4k-dimension cases. Therefore, Qc
+, Lc+ still have positive chirality and U c

−, Dc
−,

E c− have negative chirality. The light bound states are (4k + 2)-dimensional scalars, and

their constituents have the ψ+χ− form.

In Table 1 we list all the attractive scalar channels and the binding strength of the

composite scalars in the MAC approximation. The higher-dimensional gauge couplings ĝi

are related to the four-dimensional ones by the volume of the D− 4 compact dimensions,

ĝi = gi
√
VD−4. We use the SU(5) normalization for the hypercharge gauge coupling, where

ĝ′2 = (3/5)ĝ2
1. We denote the scalars transforming as the left-handed doublet quark under

the SM gauge group by q̃, borrowing the notation from supersymmetry, and the scalars

transforming as (3, 2,−5/6) under SM gauge group by X.

Although composite operators such as Q+ΓαQ+, where α = 5, ..., D, are also scalars

in four dimensions, (reduced to qLqR ± qRqL in the two-component spinor notation,)

they belong to the vector channels in D dimensions. We make the usual dynamical

assumption that Lorentz invariance is not spontaneously broken by the strong gauge

dynamics. If these vector bound states do form, we assume that their masses are close

to the cutoff scale. Although the D-dimensional Lorentz invariance is broken by the

compactification, this breaking occurs at a scale significantly lower than the cutoff scale

5



where the interactions become strong and the bound states are formed, so it should have

little effect.

Above the compactification scale, the running of the four-dimensional gauge couplings

becomes power-law [11] due to the presence of the KK modes. The convergence of the three

SM gauge couplings is accelerated. One typically finds that at the scale where the gauge

interactions become non-perturbative, the three gauge couplings become comparable and

are consistent with unification within theoretical uncertainties [12]. Since the binding

force is dominated by ultraviolet interactions, the SU(2)W and U(1)Y interactions could

be as important as the SU(3)C interaction. In Table 1 we also list the relative binding

strength for all the attractive scalar channels by assuming ĝ1 = ĝ2 = ĝ3. In order to avoid

proton decay we do not invoke a unified gauge group, and simply assume that physics

above Ms preserves baryon number. However, if there was a unified gauge group at Ms,

then the exchange of the additional gauge bosons would modify the binding strength.

An inspection of Table 1 shows that the most deeply bound states are the six-

dimensional HU and HD scalars, which transform under the gauge group as the Standard

Model Higgs doublet. Note that this is true for a wide range of couplings ĝi; gauge cou-

pling unification is not a necessity. These scalars have large Yukawa couplings to their

constituents, Q+U− and Q+D− respectively. HU is more strongly bound than HD, so

that it naturally acquires a vacuum expectation value (VEV), breaking SU(2)W ×U(1)Y

down to U(1)EM . Furthermore, if the binding strength of HU is not much larger than the

critical value where the squared-mass of HU turns negative, then the VEV of HU will be

below the compactification scale. Hence, the zero mode of HU plays the role of the SM

Higgs doublet.

In the one-gauge boson exchange approximation, the squared-mass of HD is expected

to stay positive, because of the difference in the hypercharge interaction which also be-

comes strong, though significantly smaller than the compositeness scale. The other com-

posite scalars, HE , q̃, q̃
′, q̃′′, X, and X ′ are not likely to be sufficiently strongly bound

for being relevant at low energies. Therefore, we have a compelling picture, in which the

electroweak symmetry is correctly broken and only the top quark acquires a large mass.

The low-energy effective theory below 1/R is simply the Standard Model plus a possible

additional Higgs doublet (the zero mode of HD).

6



Composite
scalar constituents

SU(3)× SU(2)×U(1)
representation binding strength

relative binding
for ĝ1 = ĝ2 = ĝ3

HU Q+U− (1,2, + 1/2) 4
3 ĝ2

3 + 1
15 ĝ2

1 1

HD Q+D− (1,2, − 1/2) 4
3 ĝ2

3 − 1
30 ĝ2

1 0.93

b̃ Q+Qc
− (3,1, − 1/3) 2

3 ĝ2
3 + 3

4 ĝ2
2 − 1

60 ĝ2
1 1 − ǫ

b̃′ U−Dc
+ (3,1, − 1/3) 2

3 ĝ2
3 + 2

15 ĝ2
1 0.57

b̃′′ Qc
−L+ (3,1, − 1/3) 3

4 ĝ2
2 + 1

20 ĝ2
1 0.57

b̃′′′ Uc+E− (3,1, − 1/3) 2
5 ĝ2

1 0.29

HE L+E− (1,2, − 1/2) 3
10 ĝ2

1 0.21

q̃′′ L+D− (3,2, + 1/6) 1
10 ĝ2

1 0.07

Table 2: Attractive scalar channels in eight dimensions with chiral fermions. We include
an ǫ > 0 in the b̃ channel to account for the lifting of the degeneracy due to the running
coupling effect below Ms.

2.2 Fermions in eight dimensions (D = 4k + 4)

In eight dimensions (or more generally in D = 4k + 4 with k ≥ 1) with chiral fermions,

there are some different bound states because charge conjugation flips the chirality. Be-

sides HU , HD, HE , and q̃′′, there are four more bound states transforming like the right-

handed down-type quark under the SM gauge transformation (see Table 2). Among them,

the bound state b̃ = Q+Qc
− is also strongly bound and in the MAC approximation would

have the same binding strength as HU if all three SM gauge couplings had the same

strength. The degeneracy is accidental and will not be exact. For example, by taking

into account the effect of running couplings, the Q+Qc
− channel will be somewhat weaker

than the Higgs channel Q+U− even if we assume ĝ3 = ĝ2 = ĝ1 at the cutoff scale, because

the contributions coming from scales below Ms have ĝ2 < ĝ3. Nevertheless, the composite

scalar b̃ is expected to be quite light if the squared-mass of HU becomes negative. The

VEV of HU will give a positive contribution to the squared-mass of b̃, and hence prevents

b̃ from acquiring a nonzero VEV and breaking the color gauge group. The low-energy

theory in this case is a two-Higgs-doublet model plus a charged color triplet scalar.
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3 Four-fermion Operator Approximation

In the previous section we have studied the formation of bound states using a most

attractive channel approximation. A more detailed study of the bound state properties

may be based on the following considerations.

The higher-dimensional gauge interactions become strong at the ultraviolet cutoff,

and therefore the high-momentum gauge fields give the dominant interaction between

the fermions. The picture described in the previous section can be studied in a more

quantitative manner by approximating the dynamics of the higher-dimensional gauge

interactions with an effective theory involving four-fermion operators suppressed by a

scale Λ ∼Ms
1:

∫

dDx
−1

2Λ2

[

ĝ2
3

(

Q+ΓαT rQ+ + U−ΓαT rU−+ D−ΓαT rD−

)2
+ ĝ2

2

(

Q+Γα~σ2Q+ + L+Γα~σ2L+

)2

+3
5 ĝ

2
1

(

1
6Q+ΓαQ+ + 2

3U−ΓαU− − 1
3D−ΓαD− − 1

2L+ΓαL+ − E−ΓαE−
)2
]

, (3.1)

where σ are the Pauli matrices.

To be concrete, we study the D = 6 case in this section. The fermion fields depend on

the spacetime coordinates xα, labeled by α = 0, 1, 2, 3, 5, 6, where x5 and x6 are compact,

of size πR. The six-dimensional gamma matrices are given in terms of the four-dimensional

ones by, e.g.,

Γµ =

(

−γµ 0
0 γµ

)

, µ = 0, 1, 2, 3, Γ5 =

(

0 iI
iI 0

)

, Γ6 =

(

0 I
−I 0

)

, (3.2)

and the 6-dimensional chiral projection operators are defined by

P± ≡ 1 ± Γ7

2
=

1

2

(

1 ∓ γ5 0
0 1 ± γ5

)

. (3.3)

The four-fermion operators (3.1) may be analyzed along the lines presented in [4]. The

scalar channel operators can be obtained after Fierz transformation,
∫

d6x
3

2Λ2

[

cU
(

Q+U−

) (

U−Q+

)

+ cD
(

Q+D−

) (

D−Q+

)]

+ · · · , (3.4)

1 If gauge fields live in some additional dimensions where fermions do not propagate, and those
dimensions have sizes much smaller than R, then one can first integrate out those additional dimensions
and obtain the four-fermion interactions suppressed by the scale of those dimensions [4]. Even if these
dimensions have size of order R, the one gauge boson exchange is dominated by the ultraviolet and leads
to local, four fermion operators. In the case where gauge fields and fermions propagate in the same
dimensions, the four-fermion interactions generated by the gauge dynamics are non-local. Replacing
them by local four-fermion operators is harder to justify, but analogous treatments in four dimensional
gauge theories often work well empirically.
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where cU , cD are the binding strength for the corresponding channels, which in the

simplest approximation are proportional to the value obtained in the MAC analysis,

(4
3
ĝ2
3 + 1

15
ĝ2
1,

4
3
ĝ2
3 − 1

30
ĝ2
1,) and the ellipsis stand for vectorial and tensorial four-fermion

operators, which are irrelevant at low energies, as well as four-fermion operators in the

scalar channels that do not produce light scalars.

The operators shown above give rise to composite scalars whose kinetic terms vanish

at a scale ∼ Ms. Therefore, these scalars are physical degrees of freedom only below Ms.

We derive the low-energy effective Lagrangian following the steps described in [4]. First,

the scalar self-energies and quartic couplings are induced by the interactions with their

constituents. These may be computed in the large-Nc limit, where only one fermion loop

contributes. Then the scalar fields may be redefined to allow canonical normalization

of their kinetic terms. This yields a six-dimensional effective action which includes the

following terms involving scalars:

−
∫

d6x

[

V6 +
ξ

Ms

(

U−Q+HU + D−Q+HD + h.c.
)

]

, (3.5)

where the effective potential is given by

V6 =
λ

2M2
s

(

H†
UHU +H†

DHD

)2
+M2

HU
H†

UHU +M2
HD
H†

DHD . (3.6)

The quartic and Yukawa couplings satisfy the usual NJL relation for large-Nc,

λ = 2ξ2 . (3.7)

The scalar squared-masses are strongly dependent on the cutoff, but this does not affect

the features important for the low-energy theory, namely their sign and relative sizes:

(

M2
HU
, M2

HD

)

≈ 16π2F

3Nc

(

1

cU
,

1

cD

)

− F ′Λ2 , (3.8)

where the first term is the bare mass re-scaled by the wave function renormalization and

the second term comes from the fermion loop. F and F ′ are positive coefficients of order

one that may be computed as in [4], by summing the loop integrals corresponding to

different KK modes. The binding strength cU , cD are proportional to the square of the

six-dimensional gauge couplings and have dimensions of mass−2 and are large in Ms units,

resulting in M2
HU

< 0.

The minimum of V6 is manifestly at 〈HU〉 6= 0 and 〈HD〉 = 0. Given that the compact-

ification scale is above the electroweak scale, the binding strength needs to be adjusted
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close to the critical value where M2
HU

becomes negative. The binding strength depends

on the strength of the higher-dimensional gauge couplings; holding the effective four-

dimensional gauge couplings fixed, this can be adjusted by changing the volume of the

extra dimensions. The tuning that needs to be done to keep the Higgs light is not severe,

since Ms is less than a factor of five higher than 1/R [12].

At scales below 1/R the two extra dimensions are integrated out, and the four-

dimensional effective theory is given by the Standard Model, (we describe the inclusion

of three generations in section 5,) with the addition of a second Higgs doublet (the HD

zero-mode).

In terms of the four-dimensional KK modes, the SM Higgs HU ≡ H
(0)
U is a bound state

of all the KK modes of U− and Q+:

HU ∼
NKK−1
∑

k=0

Q(k)
+ U (k)

− . (3.9)

The coupling of HU to each Q(k)
+ and U (k)

− mode is suppressed by
√
NKK compared with a

four-dimensional top condensate model. Therefore, the top quark mass is also suppressed

by
√
NKK compared with the ∼ 600 GeV value expected in the minimal four-dimensional

top condensate model [7] with a TeV cutoff scale.

In the leading Nc approximation, the NJL relation (3.7) is preserved after dimensional

reduction. This implies that the Higgs boson mass, Mh, is also suppressed by
√
NKK and

is given by 2mt ≈ 350 GeV in the large Nc limit. This suppression can also be understood

as the volume factor of the compact dimensions, (NKK = VD−4M
D−4
s .) Because the

Higgs doublet and the fermions live in extra dimensions, the four-dimensional top Yukawa

coupling and Higgs self-coupling are related to the higher-dimensional ones by the volume

factor:

λt =
ξ

√

VD−4MD−4
s

, λh =
λ

VD−4MD−4
s

. (3.10)

By contrast, in top-quark seesaw models [13], as well as in the model with only tR in

extra dimensions [4], the Higgs boson is heavy, at the triviality bound, unless there is

large mixing among scalars.

The above discussion only includes the leading Nc contribution, i.e. fermion loops.

To get a more precise prediction of the top and Higgs masses, one should also include the

loop contributions from gauge bosons and scalars. This can be done by computing the

full one-loop RG equations, and evolving the couplings from Ms down to the electroweak
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scale. The running of the quartic Higgs coupling further decreases the physical Higgs

boson mass. We study this effect in the next section.

4 Top and Higgs Mass Predictions

The more precise predictions of the top quark mass and Higgs mass can be obtained from

running the corresponding (four-dimensional) couplings from the compositeness scale Ms,

with the compositeness boundary condition, λt, λh → ∞ at Ms [7], down to low energies.

The running is accelerated by the power-law between the compositeness scale Ms and

the compactification scale Mc = 1/R, so the effect is significant even though the two

scales are not far apart. The low-energy predictions are governed by the infrared fixed

points of the RG equations [15]. The infrared fixed points are determined by the β-

function coefficients coming from the KK modes, which are different from those in the

four-dimensional Standard Model.

The one-loop RG equations for the (four-dimensional) SM gauge couplings above Mc

are given by

16π2 dgi
d lnµ

= NKK(µ) b′ig
3
i , (4.1)

where NKK(µ) is the number of KK modes below the scale µ, [NKK(µ) = Xδ(µR)δ, Xδ =

πδ/2/Γ(1 + δ/2) in the continuous limit,] and b′i are

b′3 = −11 +
2

3
mng +

1

2
δ + ∆3,

b′2 = −22

3
+

2

3
mng +

1

3
δ +

1

6
nH + ∆2,

b′1 =
2

3
mng +

1

10
nH + ∆1, (4.2)

m is the number of fermion components, (m = 4, 8 for 6- and 8-dimensional chiral theories

respectively,) ng is the number of generations in the bulk (assumed to be 1 throughout

most of this section), δ = D − 4 is the number of extra dimensions, nH is the number of

light Higgs doublets, and ∆i, i = 1, 2, 3 represent the contributions from other possible

light composite scalars, (e.g., a light b̃ in eight dimensions contributes 1/6, 2/15 to ∆3

and ∆1 respectively.)

The one-loop RG equations for the top Yukawa coupling and the quartic Higgs self-
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coupling are

16π2 d λt
d lnµ

= NKK(µ)λt

{

3(m+ 1)

2
λ2
t −

24 + 4δ

3
g2
3 −

9

4
g2
2 −

17

20
g2
1 + ∆t

}

, (4.3)

16π2 d λh
d lnµ

= NKK(µ)

{

12λ2
h + 6mλhλ

2
t − 6mλ4

t − 3λh

(

3g2
2 +

3

5
g2
1

)

+
3 + δ

4

[

2g4
2 +

(

g2
2 +

3

5
g2
1

)2
]

+ ∆H

}

, (4.4)

where ∆t and ∆H represent the contributions from other composite scalars.

Combining the equations for g3 and λt, we obtain

16π2 d ln(λt/g3)

NKK(µ)d lnµ
= g2

3

{

3(m+ 1)

2

λ2
t

g2
3

−
(

24 + 4δ

3
+ b′3

)

− 9

4

g2
2

g2
3

− 17

20

g2
1

g2
3

+
∆t

g2
3

}

. (4.5)

If we neglect the contributions from g2, g1, and ∆t, there is an infrared fixed point for

λ2
t/g

2
3 at (48 + 8δ + 6b′3)/(9m+ 9). For six dimensions, assuming ng = 1 and ∆3 = 0, we

have δ = 2, m = 4, and b′3 = −22/3. The infrared fixed point of λt/g3 is at

(

λt
g3

)

∗

=
2

3
≈ 0.8

g3(mt)
. (4.6)

λt/g3 decreases from ∞ at Ms towards the fixed point in running down to low energies.

How close λt/g3 gets to the fixed point at Mc depends on the ratio of Ms/Mc, (or equiv-

alently, the number of KK modes below Ms, NKK.) Below the compactification scale

Mc, the running follows the four-dimensional SM RG equations. The corresponding fixed

point becomes
(

λt
g3

)

SM∗

=

√

2

9
≈ 0.6

g3(mt)
, (4.7)

so increasing Mc (while keeping Ms/Mc fixed) will decrease the top mass prediction,

though the effect is small because of the slow logarithmic running between Mc and mt.

(Mc should not be too large to avoid extreme fine-tuning.) On the other hand, the

g2 and g1 contributions will increase λt somewhat. The value 0.8 therefore provides a

rough lower bound on the prediction of λt in this case. The predicted top mass, mt =

λtv/
√

2, v = 246 GeV, for a given NKK, (or equivalently, Ms/Mc,) and compactification

scale Mc, can be obtained by numerically solving the power-law and SM RG equations

above and below Mc. The result is shown in Fig. 1. The range of the parameters Mc

and NKK should be such that there is no excessive fine-tuning and there are enough KK

modes to produce non-perturbative strong dynamics, but not too many to cause SM gauge
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Figure 1: The predicted top mass as a function of the number of KK modes, NKK,
and the compactification scale, Mc, in the six-dimensional theory with ng = 1.

couplings to reach the Landau pole. In the figures we plot the predicted masses for the

range 0.5 TeV < Mc < 50 TeV and 25 < NKK < 200.

From Fig. 1, we see that the top quark mass predicted in this theory is in agreement

with the experimental value 174.3 ± 5.1 GeV [14] with an uncertainty of ∼ 20%.

In eight dimensions, the infrared fixed point for λt/g3 of the RG equations between

Mc and Ms (neglecting g2, g1 and ∆’s) is

(

λt
g3

)

∗

=

√
58

9
≈ 1

g3(mt)
, (4.8)

so the predicted top mass is somewhat larger compared with the six-dimensional case.

The numerical prediction is shown in Fig. 2. We can see that the prediction is also in

good agreement with the experimental value.

The Higgs mass is also controlled by the infrared fixed point structure of the RG

equations. Combining the RG equations for λt and λh, we obtain

16π2 d ln(xH)

NKK(µ)d lnµ
= λ2

t

{

12xH + 3(m− 1) − 6m

xH
+

48 + 8δ

3

g2
3

λ2
t

− 1

λ2
t

(

9

2
g2
2 +

1

10
g2
1

)
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Figure 2: The predicted top mass as a function of NKK and Mc in the eight-
dimensional theory with ng = 1.

+
3 + δ

4xHλ4
t

[

2g4
2 +

(

g2
2 +

3

5
g2
1

)2
]

+
∆H

λ2
h

xH − 2∆t

λ2
t

}

, (4.9)

where

xH ≡ λh
λ2
t

. (4.10)

If we neglect the contributions from the gauge couplings and the ∆’s, we find an infrared

fixed point for xH at

12xH + 3(m− 1) − 6m

xH
= 0 ⇒ xH∗ =

√
m2 + 30m+ 1 −m+ 1

8
. (4.11)

For six dimensions, m = 4, xH∗ ≈ 1.1. The (xH − xH∗) term is multiplied by a large

coefficient in the RG equation, therefore it approaches zero very rapidly. Numerically

we find that λh/λ
2
t reaches xH∗ almost instantaneously below Ms. At lower energies, the

g2
3/λ

2
t term increases and it has a large coefficient, so it is no longer a good approximation

to neglect it. This term reduces xH in running towards low energies. If we assume that

g2
3/λ

2
t is constant and equal to its low-energy value g2

3/λ
2
t (mt) for the correct top mass,

the infrared fixed point for xH becomes

12x′H∗ + 3(m− 1) +
64

3

g2
3

λ2
t

(mt) −
6m

x′H∗

= 0 ⇒ x′H∗ ≈ 0.5 (for m = 4). (4.12)
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Figure 3: The predicted Higgs mass as a function of NKK and Mc in the six-
dimensional theory with ng = 1. The shaded regions correspond to the top mass
lying within 1–3 σ (dark to light) of the experimental value, 174.3 ± 5.1 GeV.

Because g2
3/λ

2
t is smaller than g2

3/λ
2
t (mt) during the evolution, x′H∗ provides a rough lower

bound on xH if we ignore the difference from the SM running below Mc. Therefore, for

six dimensions we expect

0.5 ∼<
λh
λ2
t

∼< 1.1, (4.13)

which translates to the Higgs mass range

170 GeV ∼< Mh =
√

λhv ∼< 260 GeV. (4.14)

The dependence of the Higgs mass on NKK and Mc can also be obtained numerically,

and the result is shown for six dimensions in Fig. 3. Since the top mass has been de-

termined experimentally, we can obtain a better prediction of the Higgs mass from the

measured top mass. In Fig. 3, we also show the region of the parameter space which gives

the top mass within 3σ of the experimental value by the shaded area. The corresponding

limit of the Higgs mass Mh is

165 GeV < Mh(6-dim) < 210 GeV. (4.15)
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Figure 4: The predicted Higgs mass as a function of NKK and Mc in the eight-
dimensional theory. The shaded regions correspond to the top mass lying within
1–3 σ (dark to light) of the experimental value.

Similar Higgs mass prediction can be obtained for the eight-dimensional case. The

fixed points xH∗ and x′H∗ are 1.3 and 0.7 in this case, which roughly correspond to 270

GeV and 200 GeV respectively. The numerical prediction for Mh is shown in Fig. 4.

Due to the SM running below Mc, Mh can in fact get below 200 GeV. The predicted

Higgs mass in the eight-dimensional theory from requiring a correct top mass within 3σ

lies in the range

170 GeV < Mh(8-dim) < 230 GeV. (4.16)

As we emphasized in the introduction, the predictions of this section have a much

more general validity than our particular mechanism for triggering electroweak breaking

from Standard Model gauge dynamics in extra dimensions. They are a consequence of

any theory where (1) the field content is that of the Standard Model, with the gauge

bosons, Higgs boson and one full generation propagating in six or eight dimensions, and

(2) where the higher-dimensional couplings λt, λh blow up in the ultraviolet, consistent

with a composite Higgs boson.

If the first two generations of fermions also propagate in extra dimensions, there may
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be more light bulk bound states, which can contribute to the power-law running of the top

Yukawa coupling and the Higgs self-coupling. As we will discuss in the next section, some

flavor breaking must be present so that only one Higgs gets a large VEV. If we simply

assume that there are no new bound states even with more generations propagating in

the bulk, the fixed points for λt/g3 become 1.15/g3(mt) (ng = 2), 1.3/g3(mt) (ng = 3),

for six dimensions, and 1.3/g3(mt) (ng = 2), 1.5/g3(mt) (ng = 3), for eight dimensions.

Contributions from additional light scalars in the bulk can reduce the fixed points. Con-

sequently, more uncertainties are introduced in the top and Higgs mass predictions, but

we still expect the Higgs boson to remain rather light.

5 Flavor Symmetry Breaking

So far we have only discussed the case where the third generation of fermions propa-

gates in D − 4 compact dimensions, without specifying what happens with the other

two generations. A possibility is that the fermions of the first two generation are four-

dimensional [19], localized at some points in the space of extra dimensions. In this case,

there may be (four-dimensional) bound states between the bulk fermions of the third

generation and the four-dimensional fermions. The binding force of higher-dimensional

scalars receives contributions from the extra components of the gauge fields, and hence

is stronger than the four-dimensional ones at generic points in extra dimensions (away

from the orbifold fixed points) by D/4 in the lowest order approximation, (as one can

see from the Fierz transformations.) The discussion in the previous sections will hold if

these four-dimensional bound states are indeed heavy and do not appear in the low-energy

theory.

A more natural option may be that all three generations fill the D-dimensional space-

time, namely each of the Q+, U−, D−, L+, E− fermions belongs to the fundamental

representation of a global U(3) symmetry. Therefore, the spacetime configuration and

the Standard Model gauge interactions preserve a U(3)5 flavor symmetry.

As we showed in sections 2 and 3, the bound state with negative squared-mass is the

Q+U− scalar, which in the case of three generations belongs to the (3, 3) representation

of the U(3)Q × U(3)U flavor symmetry. In other words, there are nine “up-type” Higgs

doublets. In the absence of flavor symmetry breaking, these Higgs doublets are degenerate

and obtain VEV’s that break U(3)Q ×U(3)U down to the diagonal U(3), leading to eight

Nambu-Goldstone bosons in addition to the ones eaten by the W and Z. Clearly there

17



is need for flavor breaking, not only to give sufficiently large masses to these Nambu-

Goldstone bosons, but also to account for the various masses of the quarks and leptons.

We now argue that any source of flavor breaking is likely to have a large effect. Recall

that the squared-mass of a composite Higgs doublet is very sensitive to the strength of the

interaction between its constituents. Therefore, some perturbative, flavor non-universal

interaction may easily tilt the vacuum in the direction where only one Higgs doublet has

a negative squared-mass. This immediately eliminates the unwanted Nambu-Goldstone

bosons.

The flavor breaking can come from operators induced at the cutoff scale Ms, such as

the following four-fermion operators [3],

ηij
MD−2

s

(

Qi
+U j

−

) (

U j
−Qi

+

)

, (5.1)

where i = 1, 2, 3 labels the generations. If the attractive force is enhanced in one channel

(identified as the 3-3 channel) relative to the others, then only one HU (which couples

to the third generation) gets a VEV, while the squared-masses of other Higgs doublets

can stay positive. Note that given the sensitivity of the Higgs mass to the strength of

the binding interaction, the other Higgs doublets may be quite heavy even with a small

splitting in the binding strength. The flavor-changing effects induced by these scalars are

small if the scalar masses are large, or the ηij coefficients approximately preserve some

flavor symmetry [16].

As in any theory with quantum gravity at the TeV scale, flavor-changing effects be-

come a problem if all possible higher-dimensional operators consistent with the SM gauge

symmetry are induced with unsuppressed coefficients. One has to assume that the prob-

lematic flavor-changing operators, such as ∆S = 2, are suppressed by an underlying flavor

symmetry or some other mechanism of the fundamental short-distance theory.

With only one or two composite Higgs doublets in the low-energy theory, the light

quark and lepton masses can be generated by certain four-fermion operators induced at

Ms. To be specific, let us discuss the HU and HD bound states. Note that even though the

squared-mass of HD is likely to be positive because the Q3
+D3

− channel is not sufficiently

strongly coupled, a
(

Q3
+U3

−

) (

Q3
+D3

−

)

(5.2)

operator would induce a VEV for HD. The important point is that operators such as

(

Q3
+U3

−

) (

U i
−Qj

+

)

,
(

Q3
+D3

−

) (

Di
−Qj

+

)

,
(

Q3
+D3

−

) (

E i+Lj−
)

(5.3)
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induce Yukawa couplings for the Higgs doublets [18]. In fact this choice of operators has a

flavor structure that leads in the low-energy theory to a type-II two-Higgs doublet model,

i.e., HU gives masses to the up-type quarks while HD gives masses to the leptons and

down-type quarks.

Another possibility to prevent the first two generation forming light bound states is

that the fermions of different chirality are split in the extra dimensions [17]. Consider for

example the case that quarks and leptons propagate in D = 6 dimensions, (four infinite

and two of radius R,) and there is one additional transverse dimension with coordinate x7

and radius RT (> M−1
s ) smaller than R. Assuming that the third generation is localized

at x7 = 0, and the other two generations are at x7 6= 0 with the + and − chiralities

localized at different x7, the strength of the attractive channels which involve the first two

generations is suppressed by the separation. In this case the spectrum of bound states

is the same as the one described in section 2, namely there is a single six-dimensional

Higgs doublet, HU , with a large Yukawa coupling to the top quark, and a six-dimensional

Higgs doublet, HD, with a large coupling to the bottom quark (and M2
HD

> M2
HU

.) The

light fermion masses can still arise from the operators (5.2), (5.3), with the hierarchies

explained by the distances between the fermions.

6 A Comparison with Supersymmetry

Given the SU(3)C × SU(2)W × U(1)Y gauge structure of the quark and lepton inter-

actions, two crucial questions arise: why is the gauge group broken spontaneously to

SU(3)C × U(1)EM , and why does just one fermion, of charge 2/3, couple strongly to this

symmetry breaking. Supersymmetric extensions of the Standard Model are known to

make significant progress on these questions, and in this section we compare our mecha-

nism with the case of supersymmetric electroweak symmetry breaking.

Our extra-dimensional approach shares certain features with supersymmetric theories:

both extend spacetime symmetries and have the breaking scale of this extra spacetime

symmetry linked to the scale of electroweak symmetry breaking. The gauge, quark and

lepton fields are extended to become representations of the larger spacetime symmetry

— they propagate in superspace or in the extra-dimensional bulk. Furthermore, in both

cases the dynamics which generates a negative squared mass for the Higgs field is directly

connected to the interaction which leads to a heavy top quark. However, on closer inspec-

tion the mechanisms are completely different and much insight is gained by comparing
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the assumptions and accomplishments of these two approaches.

Perhaps the largest difference is that in supersymmetric theories the Higgs particles

are added to the theory by hand, whereas in the extra-dimensional theory they are au-

tomatically generated as quark composites, bound by the Standard Model gauge forces

which become strong in the bulk. It is by no means obvious that Higgs doublets need to

be added in supersymmetric theories, since the scalar superpartner of the lepton doublet

has the right gauge quantum numbers to be the Higgs boson. However, it has not proven

possible to break electroweak symmetry using only the sneutrino VEV — one of the great

“missed opportunities” of supersymmetry.

In supersymmetric theories it is very significant that the correct pattern of electroweak

symmetry breaking is triggered by the radiative corrections induced by the large top quark

Yukawa coupling. The theory has many scalars: squarks, sleptons and Higgs bosons, yet

only the Higgs boson acquires a VEV. However, a large top quark Yukawa coupling must

be input into the theory by hand. Of course, experiment tells us that the top quark

is very heavy; but we would like the theory to explain why an up-type quark is heavy.

It is just as easy to construct supersymmetric theories where the τ lepton has a very

large Yukawa coupling rather than the top quark. In this case supersymmetry predicts a

different pattern of electroweak symmetry breaking: U(1)Y is broken while SU(2) survives

as an unbroken symmetry. Thus the success of supersymmetry is to correlate the pattern

of electroweak symmetry breaking with the nature of the heaviest fermion, not to explain

why a fermion is heavy. Contrast this with the case that the Standard Model gauge

forces propagate in 6 or 8 dimensions. There is no need to introduce an additional non-

gauge interaction by hand for electroweak symmetry breaking. When the gauge forces

get strong, they bind a scalar Higgs and automatically induce a large Yukawa coupling

to an up-type quark. No interactions are needed beyond the Standard Model gauge

forces in the extra dimensions – it is as if the gaugino interactions could somehow induce

electroweak symmetry breaking and a large top quark mass! Furthermore, there is a direct

link between the gauge quantum numbers of a generation and the result that the very

heavy fermion is an up type quark.

While supersymmetric radiative electroweak symmetry breaking employs a heavy top

quark effect, it does not predict the mass of the top quark. In fact, a very heavy top quark

is not needed — 50 GeV is certainly sufficient. On the other hand, the extra-dimensional

approach employs an NJL-like mechanism. In four dimensions, this would yield a large

top Yukawa coupling at the compositeness scale, and unless this scale is very high (thereby
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necessitating an enormous fine-tune), the top quark is much too heavy, mt ≈ 600 GeV.

However, the magic is that in extra dimensions, the fundamental higher-dimensional cou-

plings can naturally be large and yet be consistent with the more “perturbative” four-

dimensional couplings g, λt, λh ∼ 1 due to a moderate dilution factor from the volume of

the extra dimensions. This is why our theories predict naturally smaller top and Higgs

masses. In both types of theory there is the possibility that the top quark mass is de-

termined by infrared fixed point behavior of the renormalization group equations for the

Yukawa coupling. In supersymmetry, quasi-fixed-point behaviour leads to a top quark

mass mt ≈ 205 sinβ GeV for tanβ not too large [20]. A correct top mass can be obtained

for tanβ ∼ 1.6, which gives rise to a relatively light Higgs boson. The lower bound on the

Higgs mass from LEP II has ruled out such a low tanβ in the simplest Minimal Supersym-

metric Standard Model. With extra dimensions, the need for criticality implies that the

top quark fixed point is relevant, even though it may not be reached, and leads to a correct

prediction of the top quark mass, although with considerable O(20%) uncertainties. This

is a very significant result. A more precise prediction is frustrated by a lack of control

of the ultraviolet behavior of the theory, implying that one does not know how closely

the infrared fixed point is approached. A correct prediction of the top quark mass in

supersymmetric theories requires additional structure, such as SO(10) grand unification;

for extra dimensions, the correct prediction is inherent to the mechanism of electroweak

symmetry breaking induced by the Standard Model gauge interactions.

Both schemes share a common mystery: why is there a light Higgs boson? In the

supersymmetric case, once the Higgs fields have been introduced, it is necessary to un-

derstand why they do not acquire a gauge invariant mass of order the Planck scale. In

the case of extra dimensions, the most natural mass for the composite scalars is of order

the scale where the gauge interactions get strong, 10 TeV for example2. For supersym-

metry, the best solution to this “µ problem” is to introduce a symmetry which forbids

a bare Higgs mass in the supersymmetric limit, and arrange for the generation of the

operator [µHUHD]F once supersymmetry is broken. For extra dimensions, it is necessary

to assume that the strong gauge dynamics is such as to bind the Higgs boson close to

criticality, where its mass vanishes. We know of no symmetry which can guarantee this,

so apparently a fine tune is necessary — this is clearly the primary weakness of the extra-

2 The lower bound on the compactification scale from direct searches of KK modes is below 500 GeV
in the case of three generations in the bulk because the KK modes can be produced only in pairs. Thus,
the scale of compositeness could be in principle as low as ∼ 1 TeV. However, indirect constraints from
the electroweak data are likely to push this bound to the few TeV range.
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dimensional scheme. Perhaps it is accidental, or perhaps it results naturally from the

non-perturbative gauge dynamics which we do not understand.

For both supersymmetry and extra dimensions, given the existence of a light Higgs, the

simplest schemes impose constraints on the mass of the Higgs boson. Unlike the Standard

Model, the scalar quartic coupling is not a free parameter. In supersymmetric theories

it is related to the electroweak gauge couplings in such a way that there is a tree level

upper limit to the lightest Higgs mass ofMZ , which gets increased by radiative corrections

to about 135 GeV. With dynamical electroweak symmetry breaking one typically thinks

of a very heavy, or non-existent, Higgs boson. However, the extra-dimensional scheme

has a light Higgs boson because the renormalization group equations of the dimensionally

reduced theory has an infrared fixed point which is quickly reached, and which sets the self-

coupling close to the square of the top Yukawa coupling. The expected range of the Higgs

mass in the simplest scenarios is in the range 165 GeV to 230 GeV, and has no overlap with

the supersymmetric case. In non-minimal theories with extra light scalars, the constraints

on the Higgs mass are relaxed for both supersymmetry and extra dimensions.

In supersymmetric theories one has the freedom to add Yukawa couplings by hand to

describe the full mass spectrum and mixing matrices of the quarks and charged leptons.

As in the Standard Model, it is easy to construct a realistic theory of flavor — but at the

expense of a deeper understanding, or any predictivity. In extra dimensions, incorporating

flavor beyond the top quark mass is more challenging, and potentially more rewarding. For

example, if all three generations propagate in the bulk there is a U(3)5 flavor symmetry.

The composite Higgs multiplet HU transforms non-trivially as (3,3) under U(3)Q×U(3)U

and, when it acquires a VEV, many of its components become Goldstone bosons. To

avoid this it appears that flavor, at least in part, may be a phenomenon of the bulk.

Clearly, many geometrical configurations are possible, but the crucial ingredient must be

that flavor breaking is inextricably linked to spacetime symmetry breaking, which is not

the situation usually envisaged in supersymmetric theories.

In both schemes, electroweak symmetry breaking is a manifestation of a deeper space-

time symmetry breaking, so that the more fundamental question becomes the origin and

nature of spacetime symmetry breaking. In the case of supersymmetry, the Standard

Model is protected to some degree from the primordial supersymmetry breaking, so that

the question of mediating the supersymmetry breaking to the Standard Model becomes

of paramount importance to phenomenology. With extra dimensions such protection is

absent — the mediation of spacetime symmetry breaking to the Standard Model occurs
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directly via the KK spectrum of the excitations of the Standard Model particles.

In summary: extra dimensions offer a more predictive and constrained mechanism for

electroweak symmetry breaking than occurs in supersymmetric theories. The Standard

Model gauge interactions create a Higgs boson as a bound state of top quarks, induce

it to acquire a VEV, correctly predict the top quark mass with O(20%) uncertainties,

and predict a somewhat light Higgs boson in the 165 − 230 GeV range. It is remarkable

that the puzzle of electroweak symmetry breaking may be encoded in the Standard Model

gauge interactions and quantum numbers, with no need for any extra particles or interac-

tions beyond those required by extra-dimensional propagation. Given the very plausible

assumptions we have made regarding the strong Standard Model gauge dynamics, the

only price to be paid is a moderate tuning to keep the composite Higgs boson light.
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Appendix: Vector-like Fermions

In this Appendix we consider the case where the higher-dimensional fermions are vector-

like. This is always the case when the number of dimensions accessible to the fermions,

D, is odd, but it also occurs as a particular case for even D.

Vector-like D-dimensional fermions may form all the bound states discussed in section

2 as well as new ones. In particular, the most attractive channel is the gauge-singlet scalar

made of QQ. HU = QU is still the most attractive channel which transforms non-trivially

under the SM gauge group, but it is less strongly bound than the singlets SQ = QQ and

SU = UU . Assuming ĝ3 = ĝ2 = ĝ1, the SQ and SU channels are stronger than HU

by 3/2 and 8/7 respectively, and hence will likely condense first. The VEV’s of these

singlets do not break any gauge symmetry. However, they give positive squared-mass to
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the Higgs, HU , through their cross interactions, (or equivalently, dynamical masses to the

constituents of the Higgs, Q, U .) This may prevent the Higgs from acquiring a VEV,

jeopardizing the simple mechanism for electroweak symmetry breaking. It is a detailed

question whether the Higgs can still acquire a nonzero VEV in the presence of these

singlets, and it is hard to be estimated reliably with simple approximations.

One thing which can help electroweak symmetry breaking to occur is the orbifold

projection required to obtain the four-dimensional chiral theory. Let us demonstrate it by

an example with a simple setup. Assuming that each higher-dimensional fermion has 2n+1

components, we can obtain a single four-dimensional chiral zero mode by incorporating

orbifold projections with n Z2 symmetriess, with the composite scalars QQ and UU being

odd under all n Z2 symmetries. (By contrast, HU = QU is even under all Z2’s.) After

decomposed into four-dimensional KK modes, SQ and SU have no zero modes, and their

lowest modes will have a KK mass component of
√
n/R, which makes their squared-

masses less negative. In addition, their self-quartic-couplings will be enhanced by (3/2)n,

because their wave functions are proportional to the Sine function in these n directions

and
∫ 2πR
0 dy(

√
2 sin y/R)4 = 3/2. Larger self-couplings and less negative squared-masses

result in smaller VEV’s for SQ and SU and smaller contributions to the squared-mass of

HU . Based on the simplest one-loop effective potential estimate, one finds that for n > 2,

the Higgs can still develop a nonzero VEV and break the electroweak symmetry.

Although this analysis is hardly reliable and depends on how the extra dimensions

are compactified and the four-dimensional chiral fermions are obtained, it shows that

dynamical electroweak symmetry breaking is not ruled out in this scenario. If electroweak

symmetry breaking does occur correctly, the low-energy theory will contain two Higgs

doublets, a color-triplet scalar b̃ = QQc discussed in section 2.2, and several gauge-singlet

scalars, SQ = QQ, SU = UU , and SD = DD.
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